

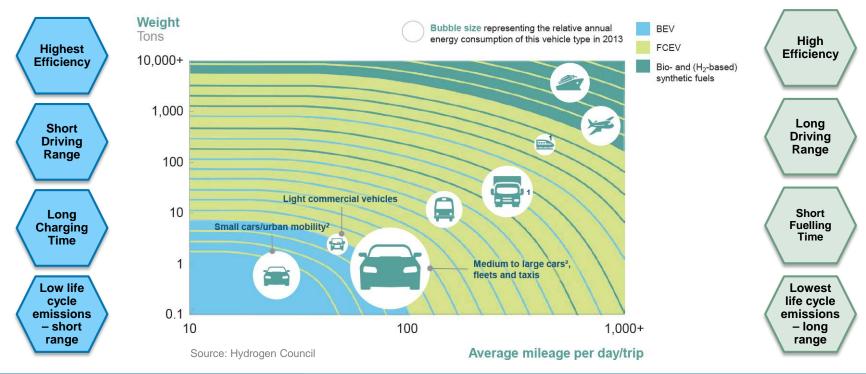
New Developments in Tunnel Safety

Safety aspects related to Fuel Cell Vehicles

Hycente

Alexander Trattner, Martin Aggarwal

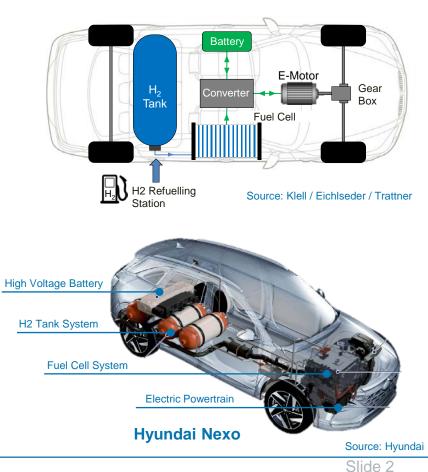
Graz, 01.12.2020



Ę

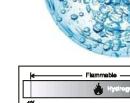
BEV - Battery Electric Vehicle, Accumulator

FCEV – Fuel Cell Electric Vehicle, Hydrogen – Fuel Cell



FCEV Powertrain

Dominant fuel cell electric powertrain


- Power demand covered by the fuel cell
- HV battery for recuperation and power support during acceleration
- Fuel Cell Power: 95 150 kW
- HV Battery Power: 25 40 kW
- HV Battery Capacity: 1 2 kWh
- H₂ Tank: 5 6.5 kg
 → Driving ranges up to 750 km

Hydrogen – Safety Relevant Properties

Hydrogen at Normal Conditions (20 °C, 1.01325 bar)

- Colorless, odorless gas
- No toxic effects
- Lowest density of all gases (14 times lighter than air)
- High diffusion tendency
- Low melting and boiling temperature
- Highly flammable
- Forms ignitable mixtures with air in a wide range of mixtures with high flame velocity and high combustion temperature
- High concentrations of hydrogen have an anesthetic or suffocating effect by displacing air
- Not hazardous to water, non-corrosive

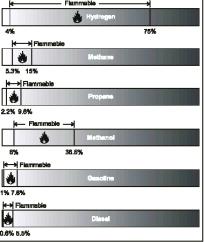


Figure 1-7 Flammability Ranges of Comparative Fuels at Atmospheric Temperature

Hydrogen Compared to other Gases

Property	Unit	Hydrogen	Methan	Propan
Molar Mass	kg/kmol	2.016	16.04	44.1
Density @ 0 °C & 1 bar	kg/m³	0.09	0.72	2.01
Triple-Point Temperature	°C / K	-259 / 14	-182 / 91	-188 / 85
Ignition Range	Vol % in Air	4 - 76	4.4 – 16.5	2.12 - 9.35
Detonation Range	Vol % in Air	18 - 59	8 – 14.5	N/A
Minimum Ignition Energy	mJ	0.017	0.28	0.25
Auto Ignition Temperature	°C	585	595	470
Gravimetric Energy Density	kWh/kg	33.3	15.4	13.8
Volumetric Energy Density 1 bar	kWh/Nm³	2.98	11.1	27.7

Hydrogen - Labels

Labels/Hazard Pictograms:

• Global Harmonized System: GHS02, GHS04

Danger Warnings:

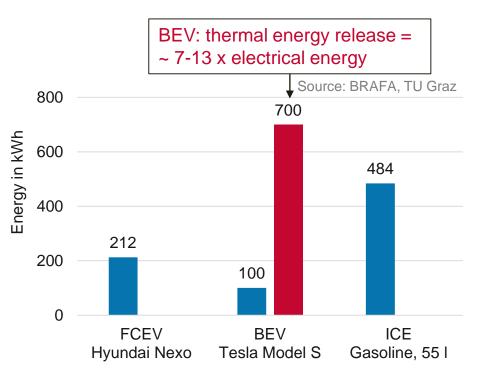
- H220: Extremely flammable gas
- H280: Contains gas under pressure; may explode when heated

Safety Instructions:

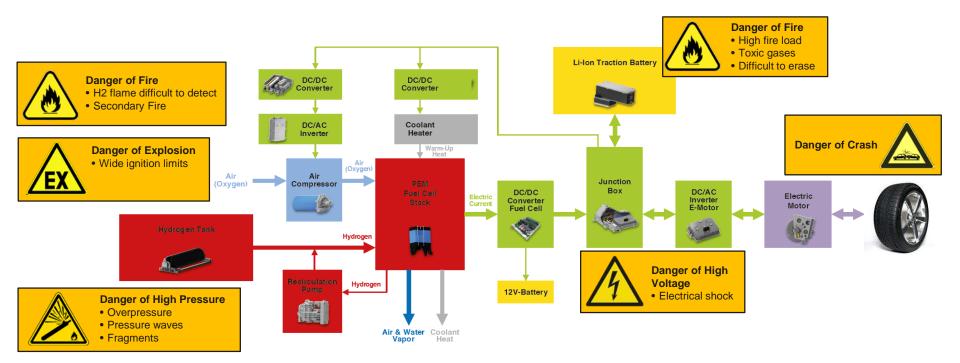
- **P210:** Keep away from heat/sparks/open flames/hot surfaces. Do not smoke.
- **P377:** Fire from escaping gas: Do not extinguish until leak can be safely removed.
- **P381:** Remove all ignition sources if safe to do so.
- P403: Store in a well ventilated place

Labels on Vehicles:

Wasserstoff (H₂) Hydrogen <u>max. Druck</u>: 1 MPa (10 bar) max. pressure: 145 PSI

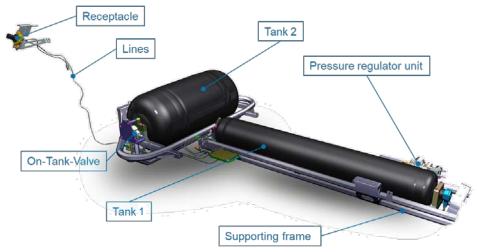


On-Board Energy


Thermal energy release in case of fire of different propulsion systems: FCEV, BEV, ICE

- Modern vehicles contain a large quantity of flammable materials
- Main differences are only propulsion systems and energy storage
- Comparison of the stored on-board energy:
 - BEV has lowest stored on-board energy but highest potential for the release of thermal energy
 - Low energy density leads to high battery mass

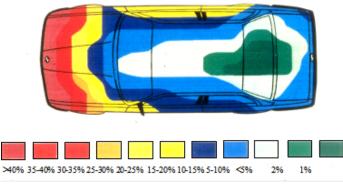
FCEV Powertrain & Hazards



Hydrogen Storage System (HSS)

Main Tasks

- Delivers hydrogen to the fuel cell
- Pressure reduction
- Refuelling interface via a filling receptacle
- Control of the electro-mechanic tank valve
- Temperature, pressure and hydrogen concentration monitoring
- Gas tightness
- Material compatibility
- Crash safe


Source: Mercedes Benz AG

Passive Safety

- Identification of safe areas: in the longitudinal center plane and around the rear axle
 - Position of tanks in this area
 - Supporting beams (longitudinal and cross) around the tanks
 - Protection plates around critical components

Source: EU-project StorHy

Source: Hyundai

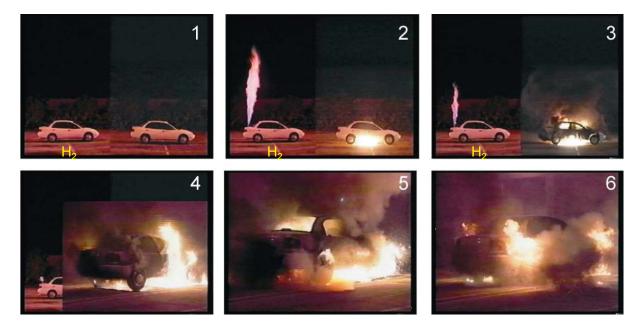
Passive Safety – Crash Test

For the **national type approval** of vehicles, crash tests by the manufacturer are mandatory: **Euro NCAP** (European New Car Assessment Programme) e.g. Hyundai Nexo

Targets:

- No external leakage (test afterwards with helium)
- No severe damage of any component of the HSS
- No contact between the chassis and the HSS

Crash Test Nexo:


- No H2 leakage
- Voltage level after collision: < 60 V within 4 sec. (standard = 60 sec.)

Source: Hvundai AUT

*ECE: Economic Commission for Europe Regulations The information contained in this presentation remains the property of HyCentA.

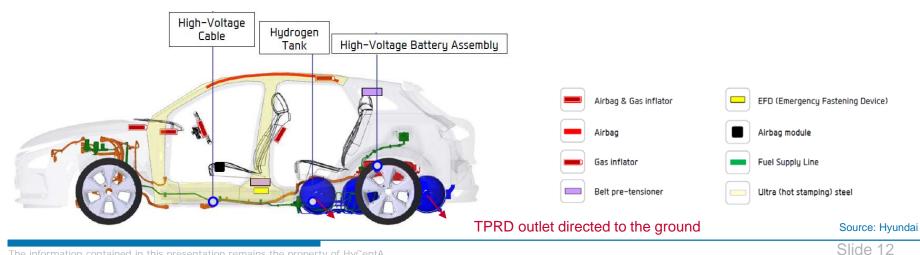
Passive Safety - Fire Test

Fire test DoE 2001 with hydrogen (left) und gasoline (right):

1: Ignition at a 1,6 mm orifice,	4: after 90 s,
2: after 3 s,	5: after 140 s,
3: after 60 s,	6: after 160 s

Source: M. Swain, Fuel Leak Simulation, Miami: Proceedings of the 2001 DOE Hydrogen Program Review NREL/CP-570-30535, 2001

Passive Safety



TPRD – Thermal Pressure Relief Device

Over-pressure: ۲

An overpressure valve protects the low pressure side against a regulator failure.

- **Over-temperature:** •
 - A thermally activated fuse (TPRD) at every on-tank-valve prevents a rupture of a cylinder by overpressure caused by rising temperatures due to e.g. fire.

Vehicle Accident - Fire

Emergency Measures for Fire Departments:

- Keep away from the rear until fire is extinguished
- If the temperature in/on the H₂-tank > 110 °C
 - Automatic activation of thermal fuse (TPRD)
 - Blowing off hydrogen to the environment (loud outflow noise)
- Do not extinguish the hydrogen flame (after approx. 5 min all hydrogen is burned)
- Hydrogen flames are almost invisible → Consider secondary fires
- Battery:
 - Li-lo; electrolyte leakage from 150 °C
 - Ignition, sparks
- Release of HF, CO, CO2
 - Face protection
 - Self-contained breathing apparatus
 - Protective suit

Hydrogen venting position

Source: Hyundai Nexo Emergency Response Guide

Hydrogen Safety

"Same compared to other fuels, but different."

Contact HyCentA Research GmbH Inffeldgasse 15 HyCento A-8010 Graz DRIVING THE SUSTAINABLE HYDROGEN SOCIETY office@hycenta.at www.hycenta.at