

SMOKE PROPAGATION IN TUNNELS – COMPARSION OF IN-SITU MEASUREMENTS, SIMULATIONS AND LITERATURE

D. Fruhwirt; P. J. Sturm, H. Schwingenschlögl

fruhwirt@ivt.tugraz.at http://www.ivt.tugraz.at

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

Graz, Austria

Motivation

 More information about the smoke propagation in the near fire region (backlayering)

Validation of CFD models

Comparison to international standards and literature

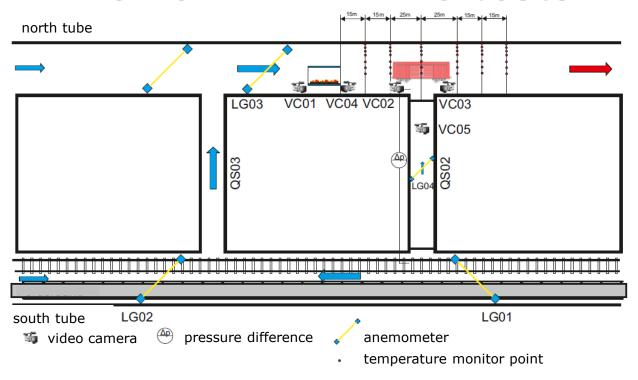
Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

Graz, Austria

Review – Koralmtunnel (KAT) fire tests

- Full scale fire tests in Koralmtunnel (Austria) carried out by IVT and ÖBB in 2016-2017 (see: "Hot smoke tests for smoke propagation investigations in long rail tunnels", Fire Safety Journal, Volume 105, April 2019)
- 14 pool fire tests including HRRs up to 21MW


Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

Review – KAT fire tests

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

CFD code: FDS 6.7

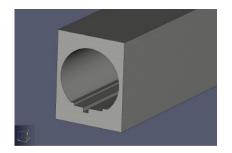
2 reference cases:

	vel_avg [m/s]	no. pools [#]	HRR_avg [MW]	HRR_peak [MW]	Duration [min]
Test 3	1.22	2	2.3	4.0	15
Test 7	1.5	8	14.5	19.5	8

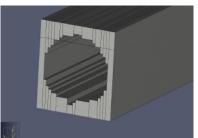
Calc. domain: 350m x 10m x 10m

Base grid: $0.25m \times 0.25m \times 0.25m$

Daniel Fruhwirt



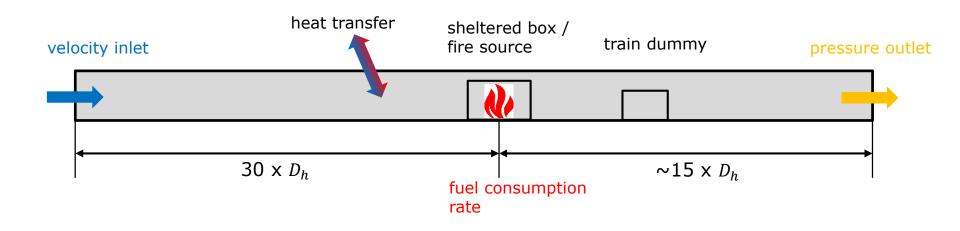
CFD code: FDS 6.7


2 reference cases:

	vel_avg [m/s]	no. pools [#]	HRR_avg [MW]	HRR_peak [MW]	Duration [min]
Test 3	1.22	2	2.3	4.0	15
Test 7	1.5	8	14.5	19.5	8

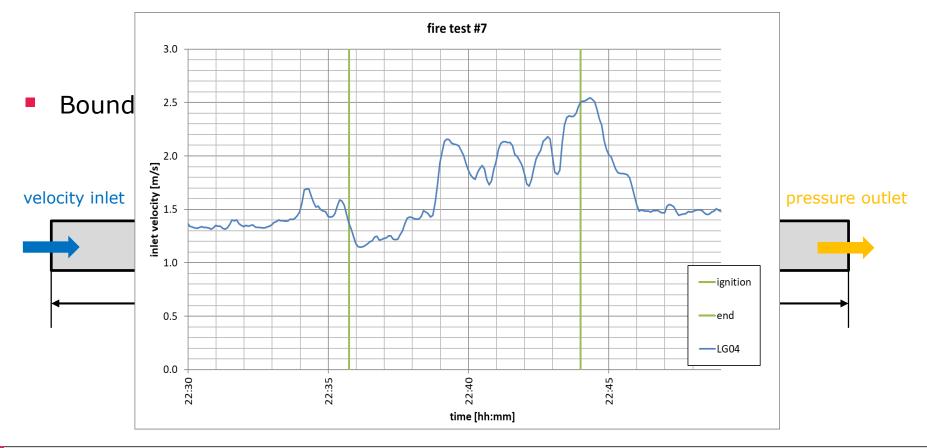
- Calc. domain:
- Base grid:

discretization


Daniel Fruhwirt

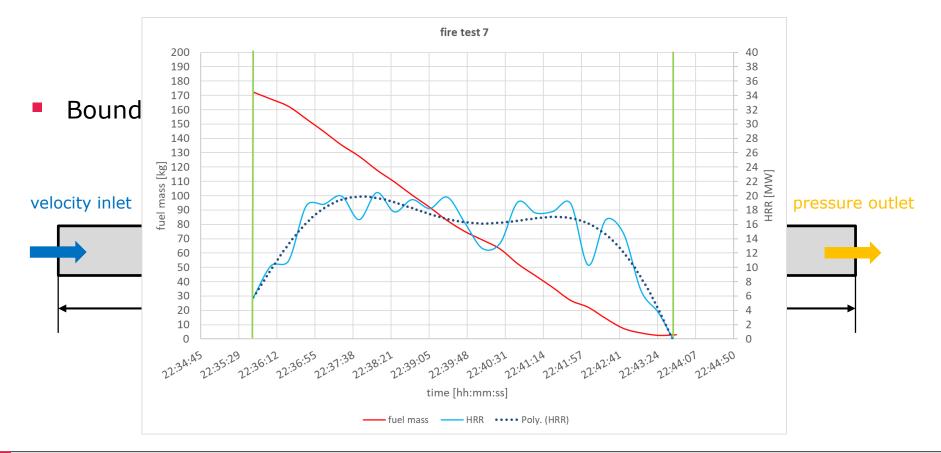
virtual Conference on TUNNEL SAFETY AND VENTILATION

Boundary conditions



Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION



Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

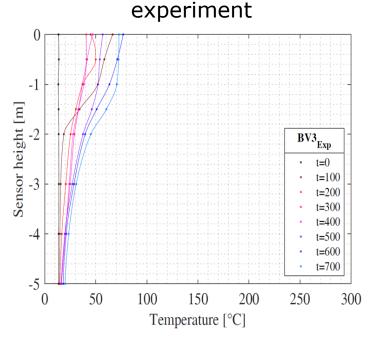
Damiel Eurobereint	virtual Conference on	Graz, Austria
Daniel Fruhwirt	TUNNEL SAFETY AND VENTILATION	December 2 nd 2020

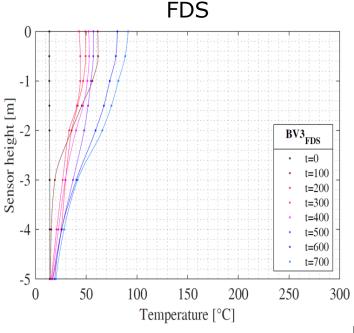
Combustion model: simple chemistry model

Variable	Value	Unit
Carbon – mol fraction	0.344	mol/mol_fuel
Oxygen –mol fraction	0.002	mol/mol_fuel
Hydrogen – mol fraction	0.654	mol/mol_fuel
Rate of Combustion	42.6	MJ/kg_fuel
Radiative fraction	33	%
CO – yield	0.01	kg/kg_fuel
Soot - yield	0.04	kg/kg_fuel

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION





Results

test 3:

- 2 pools
- HRR_avg = 2.3MW
- HRR_peak = 4.0MW
- $v_air_avg = 1.22m/s$

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

Results

test 7:

- 8 pools
- HRR_avg = 14.5MW
- HRR_peak = 19.5MW
- $v_air_avg = 1.5m/s$

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

Backlayering

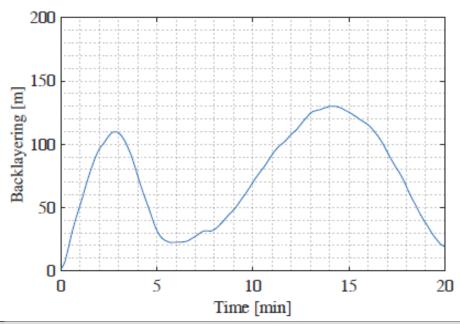
Approaches from literature:

• Thomas:
$$L_B = H * 0.6 * \left(\frac{2*g*H*\dot{Q}}{\rho_0*c_p*T_0*U_0^3*A} - 5 \right)$$

• Li/Ingason°:
$$L_B = H * 18.5 * ln(0.81 * {Q^*}^{1/3}/u^*); \quad Q^* \le 0.15$$

$$L_B = H * 18.5 * ln({Q^*}^{0.43}/u^*); \quad Q^* > 0.15$$

°Equations are derived for short backlayering lengths (<50m)


virtual Conference on Graz, Austria
TUNNEL SAFETY AND VENTILATION December 2nd 2020

Backlayering - Results

FDS simulation: backlayering as a function of time during KAT test 3

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

Backlayering - Results

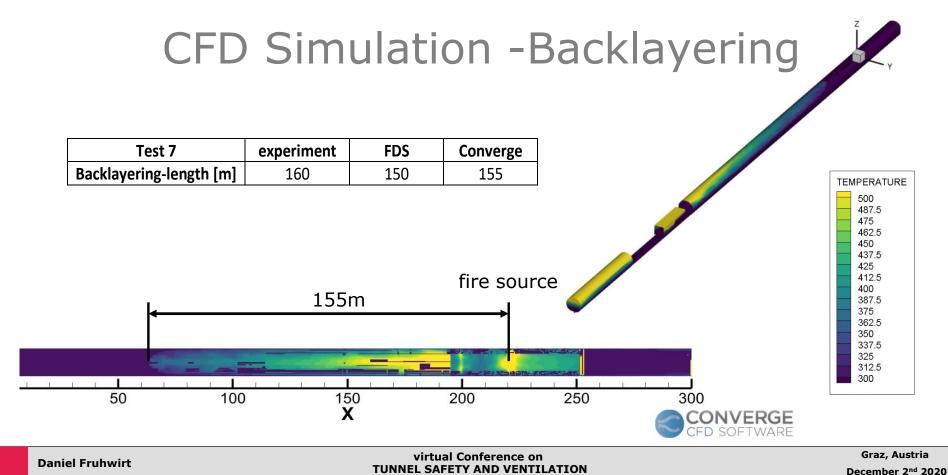
Test	Experiment		Experiment FDS simulation		Thomas		Li/Ingason		
no.	Peak. HRR	supply air velocity	Backlayering length	Backlayering length	% from experiment	backlayering length	% from experiment	backlayering length	% from experiment
[-]	[MW]	[m/s]	[m]	[m]	[%]	[m]	[%]	[m]	[%]
3	4.0	1.10	90	130	145	85	71	77	86
4	7.7	1.30	90	140	156	103	114	83	92
5	11.5	1.61	120	100	84	79	66	74	61
6	14.3	2.00	110	100	90	43	39	57	52
7	19.5	1.25	160	150	94	256	160	103	64
8	6.7	1.32	100	140	140	82	82	76	76
13	21.0	1.72	140	135	97	124	89	75	54

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

Backlayering - Results

Peak heat release rate	FDS	Li/Ingason	Thomas
< 10 MW	+	-	+/-
> 10 MW	-	-	+/-


+ oversetimation; - underestimation

=> FDS simulations led to accurate results

Daniel Fruhwirt

Conclusion

- Comparison of in-situ measurements and numerical investigations
- Accurate CFD results in temperature stratification
- Application of CFD models on the assessment of the backlayering
- Comparison of Backlayering
 - FDS -> results depending on HRR: ↑ if HRR<10MW & ↓ if HRR>10MW
 - Converge CFD -> results fit with data from experiments
 - Li/Ingason approach -> good results for shorter backlayering length
 - Thomas -> no clear tendency